
Journal of Functional Analysis 232 (2006) 137–147
www.elsevier.com/locate/jfa

Nonnegative functions as squares or sums of
squares�

Jean-Michel Bonya, Fabrizio Brogliab, Ferruccio Colombinib,
Ludovico Pernazzac,∗

aÉcole polytechnique, Centre de Mathématiques, 91128 Palaiseau cedex, France
bDipartimento di Matematica, Università di Pisa, largo B. Pontecorvo, 5, 56127 Pisa, Italy

cDipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy

Received 15 March 2005; accepted 22 June 2005
Communicated by G. Pisier

Available online 26 September 2005

Abstract

We prove that, for n�4, there are C∞ nonnegative functions f of n variables (and even
flat ones for n�5) which are not a finite sum of squares of C2 functions. For n = 1, where
a decomposition in a sum of two squares is always possible, we investigate the possibility of
writing f = g2. We prove that, in general, one cannot require a better regularity than g ∈ C1.
Assuming that f vanishes at all its local minima, we prove that it is possible to get g ∈ C2

but that one cannot require any additional regularity.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

In [5], while proving their celebrated inequality, Fefferman and Phong state (and
sketchily prove) a lemma assuring that any nonnegative C∞ (indeed, C3,1) function in
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Rn is a sum of squares of C1,1 functions. Here Ck,1 is the space of functions whose
partial derivatives up to order k are Lipschitz continuous.

In Section 1 we prove that, for n�4, such a regularity condition is sharp: there exist
nonnegative C∞ functions f : Rn → R that are not sums of squares of C2 functions.
The core of the proof is the result of Hilbert [8] asserting that there are homogeneous
polynomials of degree 4 that are not sums of squares of polynomials. For analogous
reasons, there exist C∞ nonnegative functions R3 → R that are not the sum of squares
of C3 functions. Even for flat functions, which are apparently far from the polynomial
situation, similar negative results occur (see Theorem 1.2).

In dimensions 1 and 2 there are no algebraic obstacles to the decomposition in sum
of squares. In dimension 2, any flat nonnegative C4 function is a sum of squares of
C2 functions; in the one-dimensional case, any C2m nonnegative function is a sum of
the squares of two Cm functions (see [3]).

What remains to study in dimension 1 is the case of just one square: the regularity of
the square root of a nonnegative function or, more generally, the existence of a function
g of a certain regularity satisfying g2 = f (we will say that g is an admissible square
root of f). This is the object of Sections 2 and 3.

The starting point can be taken from the article by Glaeser [6], who proves that if
f ∈ C2 is nonnegative and 2-flat on its zeros (i.e., f (x) = 0 implies f ′′(x) = 0) then
f 1/2 is C1. Moreover, dropping the assumption of flatness (see [10]) one has that if f
is C2, f has an admissible square root in C1(R).

We prove (Theorem 2.1) that this result is sharp: given any modulus of continuity
� there are nonnegative C∞ functions such that the first derivative of any of their
admissible square roots is not �-continuous. The case �(t) = t , i.e. that of C1,1

admissible square roots, was already proved by Glaeser in [6].
In Section 3 we treat the case of functions whose values at all the local minima are

zero or above a bound depending on the point and on the function itself. This proves
to be a necessary and sufficient condition for admissible square roots to be chosen of
class C2 if starting from a C4 function (see Theorems 3.1 and 3.5). We prove also
that this result is sharp: given any modulus of continuity � there are nonnegative C∞
functions with value 0 at all their local minima such that the second derivative of any
of their admissible square roots is not �-continuous.

The results of Sections 2 and 3 could be therefore summarized as follows: a general
nonnegative C2 function of one variable has a C1 admissible square root, but no better
regularity can be assured; if the function is C4 and its values at all its local minima are
controlled it has a C2 admissible square root, but no better regularity can be assured.
In both cases, increasing the regularity of the nonnegative function up to C∞ does not
provide a better result.

1. Nonnegative functions as sums of squares

We recall the following theorem:

Theorem 1.1 (Fefferman–Phong [5], Guan [7]). Let � be an open set in Rn; then any
nonnegative function f in C

3,1
loc (�) is a sum of squares of functions belonging to C

1,1
loc (�).
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Actually, the original statement of [7, Lemma 4] requires the global assumption
f ∈ C3,1(Rn), but the statement above is an easy consequence, thanks to the following
observation (see [3, Lemma 2.1]): for any f ∈ Ck

loc(�) (or e.g. C
k,�
loc (�)) defined on an

open subset � ⊂ Rn there exist a strictly positive function � ∈ C∞(�) and a function
g ∈ Ck(Rn) (resp. e.g. Ck,�(Rn)) with support in �̄ such that f = �2g on �.

A modulus of continuity is a continuous increasing concave function �, defined on
an interval [0, t0], satisfying �(0) = 0. If � is an open subset of Rd , a function
f : � → R will be called �-continuous on � if the following quantity

[f ]� = sup
0<|x−y|<min(t0,d(x,��)/2)

|f (y) − f (x)|
�(|y − x|)

is finite. For k ∈ N we will say that f belongs to Ck,�(�) if it belongs to Ck and if
the following quantity

‖f ‖k,� = ‖f ‖Ck +
∑
|�|=k

[
��

f/�x�]
�

is finite. We observe that for every continuous function f on a compact set there exists
a modulus of continuity � such that f is �-continuous and that we can always assume
(as we will) that �(s)�s.

Theorem 1.2. Let � be a modulus of continuity. Let us consider nonnegative C∞
functions f on Rn and possible decompositions

f =
N∑

i=1

�2
i in a neighbourhood of 0. (1.1)

(a) For n�3, there exists f such that (1.1) is impossible with �i ∈ C3;
(b) for n�4, there exists f, flat at all its zeroes, such that (1.1) is impossible with

�i ∈ C3,�;
(c) for n�4, there exists f such that (1.1) is impossible with �i ∈ C2;
(d) for n�5, there exists f, flat at all its zeroes, such that (1.1) is impossible with

�i ∈ C2,�.

Proof. (a),(c) The homogeneous polynomials (see [11,4,2])

M(x, y, z) = z6 + x2y2(x2 + y2 − 3�z2) in R3 and

L(x, y, z, w) = w4 + x2y2 + y2z2 + z2x2 − 4�xyzw in R4

are nonnegative for 0���1, vanish only at the origin for 0 < � < 1 and are not sums
of squares of polynomials for 0 < ��1.

If p ∈ R[x1, . . . , xn] is a nonnegative homogeneous polynomial of degree 2d that is
not a sum of squares of polynomials, it cannot be written as a sum of squares of Cd
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functions �i . Otherwise, the Taylor expansion of �i would reduce to �i = qi +o(|x|d),
with qi homogeneous of degree d, and one would have

∑
i q2

i = p.
Therefore, for 0 < ��1, the polynomial M cannot be written as a finite sum of

squares of C3 functions and L cannot be written as a finite sum of squares of C2

functions.
(b),(d) We write the proof of (b) using the polynomial M; the proof of (d) is again

the same, but using L.
Let �(t) = e−1/t2

for t �= 0 and �(0) = 0. We take f (x, y, z, t) = �(t)M(x, y, z) +
�(t) for a suitable nonnegative function � : R → R vanishing only at 0 that will be
precised below. On its count, f vanishes only for t = 0. Let B be a ball centered at 0
in R3. We need the following easy lemma.

Lemma 1.3. There are positive decreasing functions C�(ε) with the property that
limε→0 C�(ε) = +∞ and that for every decomposition M + ε = ∑�

1 g2
jε with gjε ∈

C3,�(B) we have
∑�

1 ‖gjε‖C3,�(B) �C�(ε).

Proof. Assume the contrary: for arbitrarily small ε it would be possible to find de-
compositions of M + ε in sums of squares with the C3,� norms of the gjε’s uniformly
bounded and therefore with the gjε’s in a compact set of C3. But then a suitable
subsequence of them would converge to a decomposition of M in sums of squares of
C3 functions in B, which is impossible. �

Now, a simple construction provides us with a decreasing function C(ε) such that
limε→0 C(ε) = +∞ and limε→0 C�(ε)/C(ε) = +∞ for every �. It suffices to choose
a decreasing sequence (εn) such that C�(ε)�n2 for ε�εn and ��n, and then to set
C(ε) = n for εn+1 �ε < εn.

It is clearly possible to choose an increasing nonnegative function �̃(t), vanishing
only at 0, such that �̃(t) = o(tN ) for all N and that

1

�(t)1/2 �C

(
�̃(t)

�(t)

)
. (1.2)

Set

�(t) =
∫ t

t/2
�̃(s)h

(
t − s

t

)
ds

t
,

where h is a nonnegative C∞ function with support in (0, 1/2) and integral 1. Since
�̃(t) is increasing, �(t)��̃(t); but C(ε) is decreasing, so the function � satisfies the
same estimate (1.2) as �̃ and belongs to C∞. Now, if f = ∑�

j=1 G2
j with Gj ∈ C3,�,

M(x, y, z) + �(t)

�(t)
= 1

�(t)

�∑
j=1

G2
j (t, x, y, z).

But the C3,�(B) norm of the Gj(t, ·) as t varies is bounded, which leads to a contra-
diction with (1.2). �
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Remark 1.4. As explained above, the nonnegative function f of Theorem 1.2 can be
chosen strictly positive outside zero in cases (a) and (c). Whether this is possible also
in cases (b) and (d), we do not know.

2. Admissible square roots

In [6] there is a well-known example of a C∞ function whose square root is not
C2. A very similar function can be taken to show that it is possible that no admissible
square root be C1,� for any � ∈ (0, 1): namely, we can set

f (t) =
{

e−1/|t |(sin2(�/|t |) + e−1/t2
) if t �= 0,

0 if t = 0.

More generally, the smaller are the minima of the oscillations near 0, the less regular
are the admissible square roots; this leads us to the following generalization.

Theorem 2.1. Given a modulus of continuity � there exists a nonnegative function
f ∈ C∞(R) that vanishes only at 0, flat at 0, such that h = (

√
f )′ is not �-continuous

on R (and therefore f has no C1,� admissible square root).

Proof. Choose a function � ∈ C∞(R) vanishing outside (−2, 2), positive on (−2, 2)

and such that �(t) = 1 for −1� t �1. Let for n�1

	n = 1

n2 , tn = 2	n +
∞∑

j=n+1

3	j ,

In = [tn − 	n, tn + 	n], Jn = [tn+1 + 	n+1, tn − 	n],

�n = 1

2n
, εn = �−1(�n/2) and 
n = �nε

2
n

where �−1 is the inverse function of �. Note that by our hypotheses, εn ��n/2�	n

and then tn + εn ∈ In. The function

f (t) =
⎧⎨⎩ �2

(
−2

t1+2	1−t

	1

)
+

∞∑
n=1

�2
(

t − tn

	n

)
[�n(t − tn)

2 + 
n] if t �0,

f (−t) if t < 0

belongs to C∞(R) and is strictly positive for t �= 0, but h is not �-continuous e.g. on
[−1, 1]. Indeed, it is easy to obtain the estimate, for t ∈ Jn ∪ In,

|f (k)(t)|�Ck�n	
−k
n −−−→

n→∞ 0 ,

while
|h(tn + εn) − h(tn)|

�(εn)
= �nεn

(�nε2
n + 
n)

1/2�(εn)
=

√
�n√

2�(εn)
=

√
2√
�n

that goes to infinity as n → ∞. �
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Remark 2.2. Although the second derivative of f 1/2 is not bounded near 0, it is not
difficult to see that f 1/2 is twice differentiable at that point (as in every other point).
Indeed, a theorem in [1] ensures that if f is in C4(R), f has an admissible square root
g such that g′′(x) exists at each point.

The set of points where g′′ is continuous contains a nonempty open set, but it can
have arbitrarily small measure (say in [0, 1]). Actually, let K ⊂ [0, 1] be a Cantor-
like compact set whose measure is �1 − �, and let us denote by In the connected
components of its complement. It is not difficult, using the construction above, to find
a nonnegative C∞ function fn, supported in In, such that ‖fn‖Cn �2−n and that gn

′′
is unbounded for any admissible square root gn of fn. It is thus clear that f = ∑

n fn

belongs to C∞ and that g′′ is unbounded near each point of K for any admissible
square root g of f.

3. Admissible square roots of functions with controlled minima

It is a remark made by Glaeser in [6] that the points that most influence the behaviour
of the first derivative of the (admissible) square root are the nonzero minima of f. In
fact, we have

Theorem 3.1. Let f be a nonnegative C4 function of one variable such that it takes
the value 0 at all its minima. Then f has an admissible square root in C2(R).

Proof. Let F be the set of points x where f is flat, i.e. such that f (k)(x) = 0 for
0�k�4. The result being easy if F = ∅, we may assume that 0 ∈ F . Let Ai be the
connected components of R\F . In each interval Ai , the points where f vanishes cannot
have an accumulation point in Ai and they can be shared out amongst two sequences
indexed by Z or an interval of Z

• the points . . . zi,� < zi,�+1 . . . such that f (zi,�) = 0 and f ′′(zi,�) > 0,
• the points . . . z′

i,� < z′
i,�+1 . . . such that f (z′

i,�)=f ′′(z′
i,�)=0 whereas f (4)(z′

i,�) > 0.

In each interval Ai , let us fix a function gi such that:

• gi is continuous and gi(x)2 = f (x) for x ∈ Ai ,
• the sign of gi(x) changes when x crosses the zi,�,
• the sign of gi(x) does not change when x crosses the z′

i,�.

The function gi is uniquely determined up to its sign and belongs to C2(Ai), which is
a classical consequence of the Taylor expansion. The function g will be defined on R

by g(x) = gi(x) for x ∈ Ai and by g(x) = 0 for x ∈ F .
Let us denote by d(x) the distance of x to F. The main part of the proof is contained

in the following lemma.

Lemma 3.2. For any R > 0, there exists a continuous nonnegative function 
 defined
on [−R, R] such that 
−1(0) = F ∩ [−R, R] and that∣∣∣g(k)

i (x)

∣∣∣ �d(x)2−k
(x) for 0�k�2 and x ∈ Ai ∩ [−R, R]. (3.1)
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Assuming the lemma true, given x ∈ R and choosing R > |x|, it is clear that the
inequalities (3.1) imply that g is of class C2 in a neighbourhood of x. In fact, if
x ∈ ∪iAi = R \ F we already know it, while if x ∈ F we prove easily using the
lemma that the limits of g, g′ and g′′ at x exist and are 0.

This concludes the proof of Theorem 3.1; we now pass to the proof of Lemma 3.2.
The function 
 can be taken equal to C�1/2 (or to any larger continuous function

vanishing on F) where the function � is defined as follows. Let � be a modulus of
continuity for the restriction of f (4) to [−2R, 2R], defined on [0, 4R]. Setting �(x) =
�(d(x)), one has∣∣∣f (k)(x)

∣∣∣ �d(x)4−k�(x) for 0�k�4 and |x| �R. (3.2)

Actually, for x ∈ Ai∩[−R, R], one has d(x) = |x − y| with y ∈ F ∩Ai∩[−2R, 2R] and
the estimates follow by integration (here we use that 0 ∈ F ). Thanks to the concavity
of �, one has also 1/2��(z)/�(x)�2 for |z − x| �d(x)/2.

We already know that gi ∈ C2 and it is thus sufficient to prove the estimates (3.1)
when f (x) > 0.

Set

	(x) = max

((
f (x)

�(x)

)1/4

;
( [f ′′(x)]+

�(x)

)1/2
)

.

In view of (3.2) one has 	(x)�d(x). We can thus apply to the function �(t) =
�(x)−1	(x)−4f (x + t	(x)), defined on [−1/2, 1/2], the following lemma, which is the
key of the proof of the Fefferman–Phong inequality (see Hörmander [9, Lemma 18.6.9]
for the proof, although his statement is slightly different).

Lemma 3.3. Let � be a nonnegative C4 function defined on [− 1
2 , 1

2 ] such that
max(�(0), �′′(0)) = 1 and that sup|t |�1/2

∣∣�(4)(t)
∣∣ �2. There exist universal constants

C0 �1 and r ∈ (0, 1/2) such that∣∣∣�(k)(t)

∣∣∣ �C0 for 0�k�4 and |t | �1/2. (3.3)

If, moreover, one has �(0)�C−1
0 , then �′′(t) > 1/2 for |t | �r and there exists s ∈

(−r, r) such that �(s) = min|t |� r �(t).

Let us consider the two following cases.

(1) One has f (x)/�(x)�C−4
0 	(x)4. Thanks to (3.3), we know that

∣∣f (k)(x)
∣∣ �C0�(x)

	(x)4−k and it is easy to estimate the first and second derivatives of gi = ±f 1/2

at x. One has∣∣f ′(x)
∣∣

f (x)1/2 �C3
0�(x)1/2	(x);

∣∣f ′′(x)
∣∣

f (x)1/2 �C3
0�(x)1/2; f ′(x)2

f (x)3/2 �C8
0�(x)1/2.

The estimates (3.1) are thus proved in this case, if only 
(x)�2C8
0�(x)1/2.
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(2) One has f (x)/�(x)�C−4
0 	(x)4. We know that f restricted to Ix = (x − r	(x), x +

r	(x)) has a minimum at some point y ∈ Ix and the assumption of Theorem 3.1
says that f (y) = 0. Moreover, by Lemma 3.3, we have

∣∣f (k)(z)
∣∣ �C0�(x)	(x)4−k

and f ′′(z)��(x)	(x)2/2 for z ∈ Ix . By the Taylor expansion, we have

±gi(z) = (z − y)

(∫ 1

0
(1 − s)f ′′((1−s)y + sz

)
ds

)1/2

= (z − y)H(z)1/2.

One has H(z)��(x)	(x)2/4, while
∣∣H ′(z)

∣∣ �C0�(x)	(x) and
∣∣H ′′(z)

∣∣ �C0�(x).
It is then easy to estimate the derivatives at the point z = x of the function z →
(z−y)H(z)1/2. One gets, with a universal constant,

∣∣∣g(k)
i (x)

∣∣∣ �C1�(x)1/2	(x)2−k

for k = 0, 1, 2.

The proof of (3.1), and thus of Theorem 3.1, is complete, choosing 
(x) = (C1 +
2C8

0)�(x)1/2. �

Remark 3.4. Under the assumptions of Theorem 3.1, if moreover f (y) = 0 ⇒
f ′′(y) = 0 (i.e. there are no points zi,�), the proof above shows that f 1/2 belongs
to C2.

Actually, the obstacle to the existence of a C2 admissible square root for a nonneg-
ative C4 function comes from the converging sequences of “relatively small” nonzero
minima. One has indeed the following modification of Theorem 3.1.

Theorem 3.5. Let f be a nonnegative C4 function on R; f has a C2 admissible square
root if and only if there exists a continuous function  vanishing on F such that, for
any minimum x0 of f where f (x0) > 0, f ′′(x0)�(x0)f (x0)

1/2.

Proof. The condition in the theorem is equivalent to the following: for any sequence xn

of nonzero minima of f which converges towards a point of F, one has f ′′(xn)/f (xn)
1/2

→ 0. We repeat the proof of Theorem 3.1, keeping the same function � and thus the
same function 	, but we will have to enlarge the function 
. What is changed is that,
in case 2, we also have to consider the possibility that at the minimum point y ∈ Ix

we have f (y) > 0 (but then, by our hypothesis, also f (y)1/2 �f ′′(y)/(y)). Define

�(x) = sup
z∈Ix

(z),

� is again continuous and vanishing on F, since 	(x) < d(x).
Now, for � ∈ Ix , by Lemma 3.3

1
2f ′′(x)�f ′′(�)�C0�(x)	(x)2 = C0f

′′(x);
and thus ∣∣∣∣ f ′(x)

2f (x)1/2

∣∣∣∣ �
(
supIx

f ′′(�)
)|x − y|

2f (y)1/2 � 2C0f
′′(y)|x − y|

2f (y)1/2

� C0(y)|x − y|�C0�(x)	(x).
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At the same time,
f ′′(x)

2f (x)1/2 � 2f ′′(y)

2f (y)1/2 �(y)��(x),

while

f (x)�f (y) + 1

4C0
f ′′(y)(x − y)2

therefore, for the second term in g′′(x) one has

f ′(x)2

4f (x)3/2 � 4C2
0f ′′(y)2(x − y)2

4f (y)1/2 1
4C0

f ′′(y)(x − y)2
�4C3

0(y)�4C3
0�(x).

It is then sufficient to choose 
(x) also larger than (4C3
0 + 1)�(x) to obtain the

inequalities 3.1. The proof is complete.
Conversely, let us assume that f has a C2 admissible square root g, but there is a

sequence xn of nonzero minima of f converging towards a point x̄ ∈ F with

lim
n→∞

f ′′(xn)

f (xn)1/2 > 0.

Then, since f ′(xn) = 0 for every n,

g′′(x̄) = lim
n→∞ g′′(xn) > 0

which is impossible, since the first 4 derivatives of f vanish at x̄ by definition
of F. �

It is clear that the regularity assumption of Theorem 3.1 cannot be weakened to
f ∈ C3,1 (take f (x) = x4 + 1

2x3|x|). The following theorem says that the conclusion
cannot be improved either, not even starting with a C∞ function.

Theorem 3.6. For any given modulus of continuity � there is a C∞ nonnegative
function f on R, taking the value 0 at all its minima, which has no C2,� admissible
square root.

Proof. Let � ∈ C∞(R) be the even function with support in [−2, 2] defined by �(t) = 1
for t ∈ [0, 1] and by �(t) = exp

{ 1
(t−2)e1/(t−1)

}
for t ∈ (1, 2). We note that the logarithm

of � is a concave function on (1, 2). For every (a, b) ∈ [0, 1] × [0, 1], (a, b) �= (0, 0),
the function t �→ log(at4 + bt2) is concave on (0, +∞) and thus the function

t �→ �2(t)(at4 + bt2)

has only one local maximum and no local minimum in (1, 2) (its logarithmic derivative
vanishes exactly once). Set

	n = 1

n2 , tn = 2	n +
∞∑

j=n+1

5	j ,

In = [tn − 2	n, tn + 2	n], �n = 1

2n
,
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εn = �−1(�n/2), 
n = �nε
2
n.

Note that the In’s are closed and disjoint and that one has εn ��n/2�	n as in Theorem
2.1. Define

f (t) =
∞∑

n=1

�2
(

t − tn

	n

)
(�n(t − tn)

4 + 
n(t − tn)
2).

Indeed, f ∈ C∞(R): this is clear except perhaps at the origin where it is sufficient to
note that for t ∈ In (where we can also estimate t − tn with 	n)

|f (k)(t)|�Ck	
2−k
n �n −−−→

n→∞ 0.

Moreover, f takes the value 0 at all its local minima which are the points tn and the
points between tn+1 + 2	n+1 and tn − 2	n. On the other hand, in a fixed interval In, f
admits only two C1 roots, namely

±�

(
t − tn

	n

)
(t − tn)

√

n + �n(t − tn)2,

therefore, any C1 admissible square root of f is of the form

g(t) =
∞∑

n=1

�n�

(
t − tn

	n

)
(t − tn)

√

n + �n(t − tn)2

for some choice of the signs �n = ±1. Observing that �(k)(0) = �(k)(εn/	n) = 0 for
all k > 0, we get

|g′′(tn + εn) − g′′(tn)|
�(εn)

= |g′′(tn + εn)|
�(εn)

= 2�nεn

�(εn)(
n + �nε2
n)

1/2 + εn

�n(
n + �nε
2
n) − �2

nε
2
n

�(εn)(
n + �nε2
n)

3/2

= 3�nεn
n + 2�2
nε

3
n

�(εn)(
n + �nε2
n)

3/2 = 5
√

�n√
8�(εn)

= 5√
2�n

that goes to infinity as n → ∞. �
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