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Abstract. Louis Boutet de Monvel, an eminent mathematician of our time, passed away on
December 25, 2014. This article addresses his outstanding personality and his great con-
tributions to mathematics.
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When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time’s waste:
Then can I drown an eye, unused to flow,
For precious friends hid in death’s dateless night

W. Shakespeare

Louis Boutet de Monvel passed away on December 25, 2014. Like many others, I
lost a friend, and the mathematical community lost an eminent and very influential
mathematician.
His work covers mainly three subjects usually considered as different (at least

by the AMS classification): partial differential equations, several complex variables
and global analysis on manifolds. However, one can also say that his entire work
tends to make these three subjects just but one. Actually, his domain of interest
was much broader, from algebraic geometry and topology to all aspects of math-
ematical physics.
Louis entered the École Normale Supérieure in 1960, where I met him the fol-

lowing year. It is there that he discovered, as I will explain, what will be the main
stream of his research. He had been professor in Alger, Nice, Grenoble and mainly
in Paris. In particular, he directed the Centre of Mathematics of the École Nor-
male Supérieure for 8 years.
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JEAN-MICHEL BONY

Let me go back to the academic year 1963–1964, when Louis was still a student
at the ENS. That year, the Cartan seminar was organized jointly by Henri Car-
tan and Laurent Schwartz, and it was entirely devoted to the proof of the Atiyah–
Singer index theorem. Many participants were able to master either the topologi-
cal member or the analytic member of the equality, but few were able to do both.
Louis, who was the youngest of the lecturers, belonged to the latter category.
During the whole seminar, there had been some kind of suspense about the sign

in the index formula for odd dimensional manifolds. It is Louis who, in the last
talk, making a thorough study of the one-dimensional case, was able to remove the
indeterminacy. Global analysis and index formulas will remain a constant concern
for him: he gave such formulas, absolute or relative or equivariant, for boundary
value problems, Toeplitz operators and D-modules.

After the seminar, an extra talk was given by M. Atiyah, sketching an index for-
mula for differential boundary problems. Louis found there the subject of his the-
sis, which led him to his famous theory of pseudodifferential boundary value prob-
lems.

1. Boundary Value Problems

Louis devoted several papers to the theory of pseudodifferential boundary prob-
lems [1,2,4] converging toward his famous paper [5] in Acta Mathematica where he
defines the full symbolic calculus of these operators—nowadays usually called “the
Boutet de Monvel calculus”—and apply this to the proof of the index formula for
general elliptic boundary value problems.

1.1. THE ALGEBRA OF “GENERAL GREEN OPERATORS”

Given a C∞ manifold with boundary ! (let us say compact for simplicity) and
vector bundles E ,E ′ on ! and F , F ′ on ∂!, he defines a family of operators con-
taining classical boundary value problems as well as their parametrices and which
is moreover stable by composition. General Green operators are “matrices”:

A=
(
P+G K
T Q

)
:

C∞(!, E) C∞(!, E ′)
⊕ −→ ⊕

C∞(∂!, F) C∞(∂!, F ′)
. (1)

(a) P stands for f &→ (P f̃ )
!
where P is a pseudodifferential operator defined in a

neighbourhood of ! having the transmission property, applied to the extension
f̃ of f by 0 outside !.

(b) K is a Poisson operator (see more details below).
(c) T is a trace operator. These operators contain classical ones (pseudodifferential

operators on ∂! applied to traces of derivatives of f ) as well as the adjoints
of Poisson operators.

(d) Q is a pseudodifferential operator on ∂!.
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A TRIBUTE TO LOUIS BOUTET DE MONVEL

(e) G is a singular Green operator. These operators (for instance, products KT of
Poisson and trace operators) map D′(!) into functions which are C∞ in !,

but not in !.

Already analyzed in [1,2] the transmission property ensures that, for f ∈C∞(!),
one has (P f̃ )

!
∈C∞(!). In the simplest case where the symbol p of P has an

asymptotic expansion p(x, ξ)∼ ∑
k pk(x, ξ) with pk homogeneous in ξ of degree

dk , the condition reads as follows:1 pk(x,−ξ) − eindk pk(x, ξ) vanishes to infinite
order on

{
xn =0, ξ ′ =0

}
. That condition is always satisfied by differential opera-

tors and by their parametrices.

1.2. THE SYMBOLIC CALCULUS

The symbol of A in (1) have two parts: the interior symbol, which is just the usual
symbol of the pseudodifferential operator P defined on the cotangent bundle T ⋆!,
and the boundary symbol, which is a Wiener–Hopf operator depending on (x ′, ξ ′)∈
T ⋆∂!.
Wiener–Hopf operators are also matrices of operators, which correspond to the

boundary calculus in dimension 1, seen in the Fourier analysis. They act on H+

which is the space of Fourier–Laplace transforms of elements of S(R+) (functions
vanishing for x<0, rapidly decreasing at +∞, and C∞ up to the origin for x ≥ 0).
Equivalently, elements of H+ are C∞ functions on the real line with a regular pole
at infinity, vanishing at infinity, and having an analytic extension in the lower half-
plane. Wiener–Hopf operators are matrices

⎛

⎝
p+ g k

t q

⎞

⎠ :
H+ ⊗ E H+ ⊗ E ′

⊕ −→ ⊕
F F ′

, (2)

where E, E ′, F, F ′ are finite-dimensional vector spaces.
Let us just describe the Poisson term k. It is associated with an element k ∈

H+ ⊗L(F, E ′) and defined by F ∋u &→ k ·u ∈ H+ ⊗ E ′.
Now, let k(x ′, ξ) be a C∞ function on Rn−1 ×Rn having the following expan-

sion:2

k(x ′, ξ)=
∑

ap(x ′, ξ ′)
(⟨ξ ⟩− iξn)p

(⟨ξ ⟩+ iξn)p+1 ,

where (ap) is a rapidly decreasing sequence in Sd1,0. It can be considered as an ele-
ment of H+

ξn
depending on (x ′, ξ ′). The Poisson operator of degree d and symbol

k is given by

K f (x)= (2π)−n
∫

eixnξn dξn

∫

Rn−1
eix

′·ξ ′
k(x ′, ξ ′, ξn) f̂ (ξ ′)dξ ′.

1Explicit formulas will be given for !=Rn+ =
{
(x ′, xn)

∣∣ xn ≥ 0
}
, the bundles being trivialized

(or omitted).
2Such expansions in H+ correspond to series of Laguerre functions in S(R+).
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Other terms in (1) and (2) have analogous definitions. The Wiener–Hopf operators
form an algebra, and the principal boundary symbol of general Green operators
behaves as expected with respect to composition and change of variables.

1.3. THE INDEX FORMULA

General Green operators acts between Sobolev spaces of convenient order; ellip-
tic ones are Fredholm and thus have a finite index. Louis associates to any such
operator A (or rather to its principal symbol) a virtual bundle [A]∈ K (T ⋆!) and
he proves that the index of A is equal to the topological index of [A]. The scope of
that formula is much more general than the case of classical differential boundary
value problems studied by M. Atiyah and R. Bott.
In my opinion, the proof given by Louis is the most natural and the most

straightforward. He uses of course the invariance of the index by deformation and
compact perturbations, but can take full advantage of his general symbolic calcu-
lus. Using the composition of an arbitrary elliptic general Green operator with spe-
cial ones for which he knows that their index is 0, he can reduce the problem to
diagonalized operators ( P 0

0 Q ) with P = identity near ∂!, for which the classical
Atiyah–Singer formula gives immediately the result.

2. Analytic Pseudodifferential Calculus

With Krée [3], Louis developed the theory of pseudodifferential operators whose
symbol belongs to the Gevrey class Gσ , σ ≥ 1. This includes the important case
(σ = 1) of the analytic calculus. He generalized this to the boundary calculus of
analytic singular Green operators in [4].
More precisely, (formal) symbols of class σ and order r are defined as formal

sums
∑

pk(x, ξ), where pk is homogeneous in ξ of degree r −k, satisfying the fol-
lowing estimates on each compact set:

∣∣∣∂α
x∂

β
ξ pk(x, ξ)

∣∣∣ ≤ c Ak+|α+β| |ξ |r−k−|β| ((k+|α|)!
)σ

β! (3)

The results are as expected: 1. For any formal symbol, there exists an associated
pseudodifferential operator, unique up to σ -regularizing ones. 2. Such an operator
P maps ultradistributions ∈Gσ ′ with compact support [analytic functionals for σ =
1] into ultradistributions [hyperfunctions for σ =1] and Pu is Gevrey in any open
set where u is 3. The usual formulas of symbolic calculus for composition, adjoint
and parametrices (of elliptic symbols) are valid.
Estimates like (3) could have led to monstrous computations, but the authors

introduced a very elegant tool: the formal norm of a symbol, whose finiteness is
equivalent to (3), which is the formal series:

Nσ (p,T )=
∑

α,β,k

(
2(2n)−kk!

(k+|α|)!σ (k+|β|)!
) ∣∣∣∂α

x∂
β
ξ pk

∣∣∣ T 2k+|α+β|.
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A TRIBUTE TO LOUIS BOUTET DE MONVEL

One has Nσ (p#q, T ) ≪ Nσ (p, T ) · Nσ (q,T ), where ≪ means that the difference
of the series has nonnegative coefficients. This is a key tool for composition and
invertibility and, a few years later, M. Sato, T. Kawai and M. Kashiwara had to
call on these formal norms when they developed their famous theory.

3. Operators with Double Characteristics

The study of pseudodifferential operators with double characteristics and of their
hypoellipticity is a subject which is important in itself. Moreover, it has deep links
with complex analysis, the system of boundary Cauchy–Riemann equations enter-
ing in that category. The analysis of Louis led him, a few years later, to the
Toeplitz calculus.

3.1. HYPOELLIPTICITY

Such a pseudodifferential operator P , of order m, has a symbol

σ (P)= p(x, ξ)= pm(x, ξ)+ pm−1(x, ξ)+· · · , (4)

such that pm vanishes of order 2 on a conic submanifold ( of the phase space. It
is elliptic outside ( and the problem is to give conditions which guarantee that it
is hypoelliptic “with loss of one derivative”, i.e.

Pu ∈ Hs =⇒u ∈ Hs+m−1 locally ,

where Hs is the usual Sobolev space.
Joint works with Treves [6,7] study that problem when ( is symplectic. In [8],

Louis develops a symbolic calculus allowing to construct parametrices of P when
( is involutive or symplectic and give applications to boundary Cauchy–Riemann
equations. More general submanifolds (, as well as multiplicities larger than two,
are studied in a joint work with Grigis and Helffer [10].
Let us describe the result when ( is symplectic of codimension 2ν and when pm

vanishes of order exactly 2 on ( (i.e. P is transversally elliptic). For each (x, ξ)∈
(, important invariants are: a convex angle *x,ξ ; the set of values of the transver-
sal Hessian of pm at that point; the eigenvalues ±iλ j , j =1, . . . , ν of the operator
on the normal space to ( associated via the symplectic form to that Hessian; the
value pm−1(x, ξ) at that point. An important invariant on ( is

I2(P)= pm−1 − 1
2i

∑ ∂2 pm
∂ξk∂xk

+
ν∑

1

λ j .

Then, P is hypoelliptic with loss of 1 derivative and has a parametrix as described
below if and only if one has:

∀α ∈Nν,
∑

j

α jλ j + I2(P) ̸=0. (5)
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3.2. NEW SYMBOLIC CALCULUS

In the usual classes of pseudodifferential operators, one can just hope to find para-
metrices belonging to the class Op S·1/2,1/2 which has no symbolic calculus. Louis
constructed in [8] a two-stage more refined calculus which allows to handle this
case as well as many other problems.
The first calculus introduces classes Sm,k(() defined (in a simplified case) as the

symbols p= pm + pm−1/2+ pm−1+· · · , such that

pm− j vanishes of order k−2 j on( for 2 j < k.

The symbolic calculus for Op Sm,k works as can be expected for composition,
adjoint, change of variables and transformation by elliptic Fourier integral oper-
ators.
Now, going back to the operator P defined by (4), one has P ∈ Sm,2 and, thanks

to the condition I2(P) ̸=0, the symbolic calculus allows to find a first approximate
inverse Q1 ∈ S−m,−2 such that

PQ1= I + R1 with R1 ∈OpH0 (6)

where Hm(()=
⋂

N>0

Sm−N/2,−N (().

Moreover, using composition with Fourier integral operators, one can assume that
Rn =Rn−ν ×Rν, x= (y, t), ξ = (η, τ ) and that (=T ⋆Y is defined by t= τ =0.
The elements of OpH0 are infinitely regularizing outside (, but they do not reg-

ularize near ( and Q1 is not a good parametrix. The next step is a decomposition
into Hermite operators.

3.3. HERMITE OPERATORS

In the model situation, the Hermite operators of degree m are defined by

H f (y, t)= (2π)n−ν

∫
eiy·ηh(y, t,η) f̂ (η)dη, (7)

where h belongs to the class Hm+ν/4 relatively to t=0 (and in particular has a fast
decay in (1+|η|1/2 |t |)−N for all N ).

There is a good symbolic calculus relating Hermite operators and pseudodiffer-
ential ones. Moreover, any R ∈OpHm(() can be written (modulo infinitely regu-
larizing operators)

R=
∑

α,β

HαQαβH ⋆
β , (8)

where (Qαβ) is a rapidly decreasing sequence of pseudodifferential operators of
degree m on Y and where the Hα are the elementary Hermite operators, corre-
sponding to h= |η|ν/4 hα(|η|1/2 t) in (7), the hα being the classical Hermite func-
tions of ν variables.
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A TRIBUTE TO LOUIS BOUTET DE MONVEL

Going back to (6), what we expect from the Hermite calculus is to solve

PQ2= R1+ R2 with Q2 ∈H−m+1 and R2 ∈H−1/2, (9)

and now R2 will be regularizing and Q1 − Q2 will be a good right parametrix.
The symbolic calculus shows that PHα ∼ ∑

HβQαβ , where (Qαβ) is a triangu-
lar matrix of pseudodifferential operators on Y whose diagonal terms have sym-
bols precisely equal to the values α ·λ+ I2(P) which are not zero by (5). In view
of (8), inverting that matrix allows to solve (9) and thus to get a parametrix and
prove hypoellipticity.

3.4. BOUNDARY CAUCHY–RIEMANN OPERATORS

Let X be a real hypersurface of Cn , one can define the ∂b complex, acting on
restrictions of differential forms of type (0,∗), the Kohn Laplacian !b = ∂b∂

⋆
b +

∂
⋆
b∂b and, for each (x, ξ)∈T ⋆X , the Levi form.
The characteristic set of !b, which is also the set of (x, ξ) for which the

sequence of symbols of ∂b is not exact, is a submanifold of T ⋆X of codimen-
sion 2n − 2. It is symplectic assuming that the Levi form is nondegenerate. Let
(q,n − 1− q) be its signature at (x, ξ)∈ (. Using the previous results of hypoel-
lipticity, Louis shows in [8] that microlocally, ∂b has no cohomology modulo C∞,
except in dimension q.

In [9], he gave a theorem of global embeddability of abstract CR-manifold. Such
a manifold X of dimension 2n−1 is given with a subbundle T ′′ of the complexified
tangent bundle T X of dimension n−1, such that T ′′ and T ′′ are linearly disjoint.
Moreover, T ′′ is formally integrable which means that the bracket of two sections
of T ′′ is still a section of T ′′. One can say that f ∈C∞(X) is holomorphic if one
has

〈
Z ,d f

〉
=0 for any section Z of T ′′. One can also define the Levi form which

is a hermitian quadratic form.
The theorem asserts that if X is compact, if 2n−1 ≥ 5 and if the Levi form is

positive definite (or negative definite), then there exists a complex manifold whose
X is the C∞ boundary: Ỹ = Y ∪ X , of complex dimension n, such that T ′′ is the
bundle of antiholomorphic vectors tangent to X . The restriction on the dimension
is essential, as shown, for 2n−1=3, by a celebrated counter-example of L. Niren-
berg. The compactness assumption, which allows to use the Hodge theory, is also
crucial.
In the abstract situation, it is possible to construct a complex ∂b and a Kohn

Laplacian !b to which the same arguments as above can be applied. In particular,
except for 2n−1=3, !b in degree 1 is hypoelliptic. This allows to find, near each
point, n independant holomorphic functions defining a local immersion of X in
Cn . Glued together, these immersions define the manifold Y .
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4. Bergman and Szegö Kernels

In [11], Louis and Johannes Sjöstrand gave a very precise description of the
Schwartz kernels of the Bergman and Szegö projectors for a strictly pseudoconvex
open set of Rn . This extends the analysis of C. Fefferman of the restrictions of
these kernels to the diagonal. The proof uses the theory of Fourier integral oper-
ators with complex phase and that of operators with double characteristics.
Let ! be a strictly pseudoconvex bounded open set of Cn with C∞ boundary

X = ∂!. The Bergman projector B is the orthogonal projector, in L2(!), on the
space of holomorphic functions belonging to L2. The Szegö projector S is the
orthogonal projector, in L2(X), on the Hardy space H2(X)= ker ∂b ∩ L2(X), the
space of traces on X of holomorphic functions.

There is a strictly pseudoconvex function ρ such that ! is defined by ρ>0. This
allows to define a phase function / ∈C∞(Cn ×Cn) such that

/(x, x)= 1
i ρ(x), /(x, y)=−/(y, x),

∂x/ and ∂y/ vanish of infinite order for y= x .

The main theorem asserts that there exists F,G ∈C∞(X × X) and F ′,G ′ ∈C∞(!×
!) such that, denoting by B(·, ·) and S(·, ·) the corresponding kernels, one has

S= F(−i/)−n +G log(−i/)

B= F ′(−i/)−n−1+G ′ log(−i/). (10)

More precisely, there exist classical symbols s(x, y, t)∼ ∑
tn−k−1sk(x, y) of order

n − 1 on X × X ×R+ and b(x, y, t)∼ ∑
tn−kbk(x, y) of order n on ! × ! ×R+,

such that

S(x, y) =
∫ ∞

0
eit/(x,y)s(x, y, t)dt

B(x, y)=
∫ ∞

0
eit/(x,y)b(x, y, t)dt,

modulo C∞ functions.

4.1. THE MICROLOCAL MODEL

A microlocal model of the Szegö projector plays a crucial role in the proof and
it will be also very important in the theory of Toeplitz operators. Let H0 be the
operator from L2(Rp

x ) into L2(Rp+q
x,y ) defined by

H0 f (x, y)= (2π)−p
∫

Rp
eix ·ξ−|y|2|ξ |/2( |ξ |

π

)q/4 f̂ (ξ)dξ . (11)

It is a Fourier integral operator with complex phase, and it is also a Hermite oper-
ator. It is an isometry from L2(Rp) onto the subspace of L2(Rp+q) made of solu-
tions of ∂

∂y j
+ y j |Dx |. The orthogonal projector in L2(Rp) on the traces of these

functions is thus S0=H ⋆
0 H0.
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A TRIBUTE TO LOUIS BOUTET DE MONVEL

It turns out that, for p=n, q=n−1, the actual Szegö projector S can be con-
jugated microlocally to S0 by elliptic Fourier integral operators.

4.2. THE LOGARITHMIC TERM

The logarithmic term of the Bergman kernel is not the leading term of the expan-
sion, but it is nevertheless a biholomorphic local invariant.
Taking advantage of the results of Kashiwara and Fefferman, Louis came back

to the analysis of the singularities of the Bergman kernel in [16,17]. In particular,
he proved that, in dimension 2, if the coefficient of the logarithmic term (G ′ in
(10)) vanishes at order 2 on ∂! in a neighbourhood of a point of ∂!, then ∂! is
locally biholomorphic to a sphere.
A somewhat related result is his analysis [27,28] of the logarithmic trace of K.

Hirachi, where he proved that, for a Szegö projector, this trace is always 0, and
thus cannot provide any new CR or contact invariant.

5. Toeplitz Operators

These operators have become a major tool in complex analysis and in the study of
contact structures. Louis defines these operators in several complex variables [12].
He develops their symbolic calculus and proves an index formula. His book [13]
with Victor Guillemin extends the concept up to defining a quantization of general
contact manifolds and proves refined results on the spectrum of these operators.

5.1. SEVEREAL COMPLEX VARIABLES

Let ! be a strictly pseudoconvex bounded open subset of Cn (or more generally
a complex analytic space with singularities, but smooth near X =∂!). Let (+ be
the half-line bundle over X (which has to be considered as a conic symplectic man-
ifold) made of points of T ∗X which are characteristic for ∂b and where ∂b is not
hypoelliptic. Let Os=Hs(X)∩ker ∂b be the space of elements of the Sobolev space
Hs(X) which extends as holomorphic functions in !.
A Toeplitz operator of degree m is an operator which can be factorized: TQ =

SQ, where S is the Szegö projector and Q is a pseudodifferential operator of
degree m on X . It maps Os into Os−m .

The important result is that the Toeplitz operators form an algebra of pseudolo-
cal operators. This algebra is locally (and modulo regularizing operators) isomor-
phic to the algebra of pseudodifferential operators in n real variables. The princi-
pal symbol of TQ is a C∞ function on (+, homogeneous of degree m, defined by
σm(TQ)=σm(Q)

(+ . There is a symbolic calculus analogous to the pseudodifferen-
tial one.
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In particular, a Toeplitz operator (or system) whose symbol is invertible is said
to be elliptic. It has then a parametrix and thus a finite index in the spaces Os .
Louis gave in [12] an index formula, analogous to the Atiyah–Singer’s one.
More recently, in a joint paper with Leichtnam et al. [31], he develops an

equivariant Toeplitz calculus and defines the asymptotic equivariant index of
Toeplitz operators. This is used for giving a new proof of the Atiyah–Weinstein
conjecture on the index of Fourier integral operators and the relative index of CR
structures.

5.2. QUANTIZATION OF CONTACT MANIFOLDS

For the results above, the microlocal model of the Szegö projector (11) plays a cru-
cial role. It permits to define in [13] generalized Toeplitz operators associated with
any oriented contact manifold or, which is equivalent, any conic symplectic mani-
fold.
Let X be a compact manifold and ( be a closed conic symplectic submanifold

of T ∗X . A Toeplitz structure on ( is defined by a projector π( in L2(X), with
image H( , which is microlocally equivalent to (11), via Fourier integral operators.
A Toeplitz operator T :C∞ ∩ H( →C∞ ∩ H( is then defined as a product π( ◦ Q
with Q pseudodifferential. Its principal symbol is σQ (

and all the results above
extend to this general situation.

5.3. SPECTRAL THEORY

If T is a self-adjoint Toeplitz operator (of order, say, 1) whose symbol is positive,
then T has a discrete spectrum λ1 ≤ λ2 ≤ λ3 · · ·→+∞. Let E be the generating
function:

E(t)=Tr(eitT )=
∑

eiλ j t .

The main result of Louis and Victor, proved using the Hermite calculus, is the fol-
lowing trace formula, relating the spectrum to the periodic bicharacteristics γ of
the Hamiltonian T :

E(t)∼=
∑

γ

Cγ (t − τγ + i0)−1 (mod L1
loc(R

+)), (12)

where the sum is extended to all periodic trajectories, which are assumed to be
nondegenerate. Here, τγ is the period of γ and the constant Cγ involves the prim-
itive period, the Poincaré map and the integral over γ of the subprincipal symbol.

As consequences, many theorems known in the pseudodifferential setting are
extended to Toeplitz operators. The counting function satisfies a Weyl law:

#
{
j
∣∣λ j <λ

}
= vol {p∈( |σT (p) ≤ 1}

(2π)ν
λν +O(λν−1), (13)
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A TRIBUTE TO LOUIS BOUTET DE MONVEL

where dim(=2ν and vol is the symplectic volume.
When all trajectories are periodic with the same period τ , and assuming that

the integral of the subprincipal symbol over any such γ is independent of γ , they
obtain the equivalent of the results of Colin de Verdière in the pseudodifferential
framework: the eigenvalues are contained into the union of intervals Im centered at
2πm/τ and of size ∼m−1 and there is a polynomial P of degree ν − 1 such that
the number of eigenvalues in Im is equal to P(m) for large m. Moreover, they give
a topological formula allowing to compute P . Another result is the definition of a
Hilbert polynomial, having a topological and an analytic interpretation, attached to
any compact symplectic manifold M as long as the cohomology class of the two
form in H2(M,R) belongs actually to H2(M,Z).

6. Relative Index Theorem

6.1. ALMOST ELLIPTIC SYSTEMS

For differential systems, Louis defines in [15] an extension of the notion of ellip-
ticity. If X is a compact real manifold, one can consider small tubular neighbour-
hoods Xϵ of X in its complexification, which are strictly pseudoconvex for ϵ small.
Given a complex D of differential operators with analytic coefficients on X , they
extend to Xϵ and thus define a complex Dϵ of Toeplitz operators on ∂Xϵ . One says
that D is almost elliptic if Dϵ is elliptic for ϵ small.
Elliptic systems of course, but also holonomic ones, are almost elliptic. Using

resolutions, the concept can be extended to coherent D-modules. Almost elliptic
complexes have a finite index. The computation of the index of D is reduced to
that of Dϵ and, thanks to [12], Louis obtains a formula which extends that of
Atiyah–Singer and of Riemann–Roch.

6.2. THE RELATIVE INDEX FORMULA

Atiyah and Singer already gave a relative index formula, for elliptic systems
depending on parameters, the “index” being a virtual fibre bundle on the space of
parameters. The situation studied by Louis and Malgrange in [18] is much more
general. What is given is a morphism f : Y → X of analytic varieties and a well-
filtered coherent DY -module P which satisfies an assumption of relative ellipticity,
but which is not limited to derivatives along the fibres.
The direct image f+P defined by Kashiwara is an element of the derived cat-

egory of DX -modules. In this nonproper situation, a result of finiteness, due to
Houzel and Schapira, asserts that f+P is coherent. Moreover, if Z ⊂ T ∗Y con-
tains the characteristic variety char(P), one can compute Z ′ ⊂T ∗X which contains
char( f+P).
The equivalent of the index is constructed as follows. One can define the gradu-

ate gr(P) (the “symbol”) associated with the good filtration. Then, one can asso-
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ciate with gr(P) an element of the Grothendieck group [P]anZ ∈ K an
Z , whose image

by the canonical homomorphism K an
Z → K top

Z is denoted by [P]topZ .
The main result of the paper is a computation of [ f+P]topZ ′ starting from [P]topZ .

Actually, the former is the K -theoretic direct image of [P]topZ under (a compactifi-
cation of) f .
There is also a statement in the real setting. In this case, Y is a real analytic

manifold with boundary, and P should satisfy a relative almost ellipticity condition
in Y and an extra condition on ∂Y, meaning that the boundary problem, without
additional boundary condition, is elliptic. The proof is founded on the complex
case, using small tubular neighbourhood of Y in its complexification.

7. Mathematical Physics

Mathematical physics had been a permanent concern for Louis. In 1979–1982, he
organized, jointly with Adrien Douady and Jean-Louis Verdier, a seminar at the
ENS [14] entitled “Mathematics and physics". He gave there talks on D-modules
and on the solution of the Riemann–Hilbert problem.
With Anne Boutet de Monvel and Gilles Lebeau [19], he studied small per-

turbations H = H0 + V of a harmonic oscillator H0 = −2 + ∑
λ j x2j . Assuming

|DαV (x)|" |x |γ+δ|α| with γ + δ < 1, the authors prove that the Schwartz kernels
of eit H and eit H0 have the same (modified) wave front set and thus that the sin-
gularities of Tr(eit H ) are contained in the set of periods of the Hamiltonian flow
of H0. The proof uses nonstandard classes of operators which are microlocal and
have good commutators, but are not pseudodifferential.
I still have to mention results with Iordan [20,25] on peak sets and articles with

Chueshov, Khruslov and Rezounenko on several aspects of long-time evolution
equations, existence of attractors and homogenization. Nonlinear parabolic (pos-
sibly retarded) equations [21,24], as well as models of diffusion of “coloured” (i.e.
having different internal structure) particles which scatter and change “colour” on
obstacles [22,23] are studied.

7.1. DEFORMATION QUANTIZATION

The notion of a star product is now a classical subject studied by many authors
and naturally appear in various contexts. Two cornerstones of its history are first
the papers of Bayen–Flato–Fronsdal–Lichnerowicz–Sternheimer in 1977 and that
of Berezin in 1974 who define ⋆-products, and then the fundamental result of
Kontsevich which, roughly speaking, asserts that any real Poisson manifold may be
“quantized”, that is, endowed with a star algebra to which the Poisson structure is
associated.
Louis was very much interested in this theory and made significant contribu-

tions. He was perhaps among the first ones to realize the importance of the theory
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of star products on complex Poisson manifolds. He enlarges a little the definition
of star products to include the case of pseudodifferential operators as well as that
of Toeplitz operators.
He gives in [26] see also [29] an almost complete classification of star algebras,

as well as E-algebras and D-algebras (where E and D denote, respectively, the sheaf
of rings of pseudodifferential and differential operators) on the cotangent space
T ∗X to a complex manifold, outside the zero section. He shows that the case
where dim X ≥ 3 is “easy”, contrarily to the cases where dim X is 1 or 2 where
strange phenomena appear.
In [30], he discusses the case of star products of a given degree of homogeneity

k. He shows that there are no nontrivial ones for k ≥ 3, k = 2 produces just the
Moyal star product and the case k = 1 is associated with a Lie algebra structure
on the dual of the space.
In June 2014, in spite of his illness, Louis gave us a talk in the conference in

honor of Gilles Lebeau. He studied the Wodzicki residual trace (noncommutative
residue) of Toeplitz or pseudodifferential projectors and proved that this trace was
always 0 for projectors of degree 0, but not if the degree was ̸=0. This is the latest
in the long series of lectures by Louis that I have attended for about 50 years.
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Projectors. Algebraic Analysis of Differential Equations from Microlocal Analysis to
Exponential Asymptotics, pp. 67–78. Springer, Tokyo (2008)

29. Boutet de Monvel, L.: Formal norms and star-exponentials. Lett. Math. Phys. 83(3),
213–216 (2008)

30. Boutet de Monvel, L.: Homogeneous star products. Lett. Math. Phys. 88(1–3), 31–38
(2009)

31. Boutet de Monvel, L., Leichtnam, E., Tang, X., Weinstein, A.: Asymptotic equivariant
index of Toeplitz operators and relative index of CR structures. Geometric aspects of
analysis and mechanics, pp. 57–79. Progr. Math., vol. 292. Birkhäuser/Springer, New
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